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How people wish to live

• Earthlike...
• Earthlike radiation shielding
• Earthlike atmosphere
• 1 g gravity
• 24 h diurnal cycle with 130 W/m2 insolation, like in southern Germany
• Nature, fields, parks, forests
• Population density 500 /km2, like in the Netherlands
• Large, interconnected world

• ... but better than Earth:
• No adverse weather
• No natural disasters
• Growable to larger living area than Earth

• Long-term sustainable
• All atoms are circulated
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Satisfying the requirements

• Moon and Mars: wrong gravity, and smaller living area than Earth
• Free-flying rotating cylindrical settlements: lack of interconnectivity with each

other (except using rocket propulsion, which is not long-term sustainable because
propellant atoms cannot be circulated)
• The cylinder radius has an upper limit coming from the tensile strength of the walls
• Formation flight of cylinders might work, but bears the collision risk, and

propellantless travel between the cylinders is a challenge

The solution:
• Attach rotating habitat cylinders to a rigid frame (megasatellite)

• The frame is < 1% of the mass budget, because it is in microgravity

• The geometry is selected to be self-similarly growable
• Use magnetic bearings, then there are no sliding/wearing surfaces

• Inductrack-type bearings are passively safe
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Ceres as source body

• Dwarf planet Ceres: 940 km, largest body of the main belt, 30 % of belt mass
• Ceres has nitrogen

• N2 is necessary for the settlement’s atmosphere
• (One might also select a carbonaceous asteroid, but those of sufficient size and low

eccentricity are almost as far as Ceres, and they probably have less nitrogen)
• Orbit Ceres

• So that we do not drift away, to keep material transfer time short
• Use high circular orbit to minimise tidal forces:

adopt 100,000 km orbit (Hill’s sphere radius is 207,000 km)

• Space elevator is an economical way to lift the material
• Elevator cable length is 1024 km
• Cable strength requirement is straightforward to meet
• Lifting needs only 54 kJ/kg of energy
• After elevator, need 20 m/s of delta-v to circularise orbit
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Growing Ceres megasatellite

• Disk-shaped megasatellite in equatorial Ceres orbit
• Spinning habitats on both sides of the disk
• Add 45o inclined mirrors to gather sunlight
• Reaction wheels are not needed

• No tidal torque because of disk symmetry
• Ceres orbit eccentricity makes ±8.7o nutation, but handled by tilting mirror elements

• Self-similarly growable at the edges, like any city
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Concentrating sunlight into the habitats

• Cylinder radius 1 km, length 5 km
• Primary and secondary mirrors inject

parallel light into light channel
• Light channel width 137 m follows

from Sun’s angular diameter

• 50 m high sunlit rural space,
1100 m2/person, 1.5 m of soil to
enable trees (upgradable to 4 m, at
cost of doubled manufacturing energy)
• 15 m high LED-lighted urban space,

900 m2/person, 81 % gravity
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Synthetic diurnal cycle

• 3 timezones, ±8 h time differences
• Light channel has adjustably sloped ceiling to create the

wanted light level in each zone
• Sum over zones is constant: no light is lost
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Thermal design

• Vacuum gap between rotating and
non-rotating parts
• Soil and radshield use internal liquid

heat transfer, because soil is rather
pool thermal conductor
• In soil, heat transfer fluid can be

water
• In radshield, e.g. light hydrocarbon,

e.g. heptane

• If needed, vacuum gap walls can be
zigzagged to increase cooling by
increased radiation transfer area

141 W/m2 141 W/m2

ǫeff = ǫ
2−ǫ

+18 oC +13 oC

−16 oC −19 oC

Air Soil Gap Radshield Space

0 5 m 10 m
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Interconnectivity
Fast and easy travel is necessary, and it must be propellantless to be sustainable

• The straightforward way:
• Travel vehicles (cars/trains/elevators...) operate in zero gravity tunnels
• Entry and exit at cylinder axes
• Passengers experience weightlessness during trip

• The Anti-Vomit way (can coexist with the straightforward way):
• Entry and exit at cylinder’s rotating perimeter
• Vehicles move at constant speed i.e. the rotation speed
• Tracks/roads are spiralled to create gravity also during trip
• Passengers do not experience weightlessness

• Vacuum or atmosphere design options
• If vacuum, vehicles move through airlocks, or passengers do it and wear spacesuits
• If atmosphere, noise might be an issue – power consumption is not

• Radshielding of the tunnels is likely unnecesary, because time spent is short
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Mass budget
For 2000 m2/person

Stationary radshield walls Ceres soil 6712 t/person 69 %
Soil and biosphere From Ceres soil 2482 t/person 25 %
Tensile structural parts Piano wire (Fe) 484 t/person 5 %
Air N2, O2 97 t/person 1 %
Reflectors, structures ... < 1%
Total ∼ 10,000 t/person 100 %

• 94 % of mass is radshield+soil+biosphere, which do not need much processing
• The main energy goes into production of tensile material

• Baseline is piano wire (99 % Fe)
• Other possibilities: dyneema, carbon fibre, glass/basalt fibre, ...

• No need to abandon any Ceres material: radshields are our trashbin
(as long as & 0.75% of Ceres material is nitrogen, for the atmosphere)
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Resource limits

• Mass 5000 kg/m2 per living area, 107 kg/person
• Production energy 5 GJ/m2 per living area, 1013 J/person

• For example, 1018 kg megasat for 1011 people needs 0.1 % of Ceres mass
and 3 % of its angular momentum
• Living area 200 million km2 – larger than Earth’s continents

• If power system doubling time is 4 months, bootstrapping time is 10 years
• 30 doublings from kW to TW power level
• The elevator is no bottleneck, it lifts material quickly
• Physics would not preclude rapid bootstrapping

• After bootstrapping, growth is limited by Ceres surface area, but the limit is high:
• If one covers 20 % of Ceres by solar panels⇒ 300 million new people per year
• For comparison, present population growth is 80 million per year
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Conclusions

• Interconnected megasatellite world in Ceres orbit
• Land with 1.5 m of soil, natural sunlight, 24 h day/night cycle
• Population density of 500 people/km2, like Netherlands
• Economical, because can lift Ceres materials by space elevator
• Long-term sustainable, all atoms circulate
• Growable to at least beyond 1011 people
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