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  2. Introduction
This document presents two simulation models developed for simulating the dynamical 
behaviour of the E-sail tether rig. The first described model VESVISION-v2 can simulate 
the  spinning  E-sail  rig  with  full  physics  (tether  elasticity,  thermal  expansion,  electric 
resistivity etc.) and also includes the simulate tether outreeling (change of tether length)  
and uses a second order numerical solver for the 1-D time-dependent partial differential  
equations which governs the tethers. The second described model VESVISION-v3 provides 
a highly accurate 8th order numerical ordinary differential equation solver and a general 
framework for simulating and arbitrary collection of rigid bodies, point masses and their  
interaction  forces,  as  well  as  arbitrary  external  forces.  Both  models  support  OpenMP 
parallel  execution  and fast  execution  was  an  important  design  goal.  Both  models  also 
employ OpenGL based realtime visualisation and user interaction. The entire VESVISION-
v2 and the core of VESVISION-v3 is written in C++. In VESVISION-v3 the model is 
defined flexibly by a Lua [AD-2] script which the user can easily modify or write new 
ones. In VESVISION-v2, the user can write his E-sail control algorithm in plain C. In that  
way, VESVISION-v2 can serve as a “flight simulator” for testing various E-sail control 
algorithms in realistic solar wind conditions.

  3. VESVISION-v2
The  VESVISION-v2  code  (VES=Virtual  Electric  Sail)  models  the  tether  as  a  1-D 
continuous string which has zero stiffness but finite elasticity and thermal expansion. The 
formulation  also  includes  the  relevant  mass  flow terms  at  the  spacecraft  end  to  allow 
simulation of tether reeling (changing the tether's length at some speed which is an arbitrary 
prescribed function of time). The tips of the tethers can contain Remote Units of given mass 
(modelled as point masses) and the tips can also be connected together by auxiliary tethers 
(with given mass per length and given elastic properties). There is also a possibility to add 
“extra” radial tethers with free ends pointing outward from the Remote Units. The extra 
tethers can also contain their own end masses. The main spacecraft is simulated by a point  
mass from the point of view of tether dynamics. To study potential precession and tumbling 
of  the main spacecraft,  it  can also be modelled as  a rigid body which responds to the 
torques coming from the tethers.  The approximation made in this case is that  the main 
spacecraft is very small compared to the length of the tethers so that the main spacecraft's  
angular momentum is negligible in comparison to the angular momentum of the tether rig 
(the  self-consistent  main  simulation  treats  the  main  spacecraft  as  a  point  mass,  but  a 
solution for a rigid body version of the main spacecraft is computed afterwards without 
backreaction).
VESVISION-v2 contains models for thermal expansion of the tethers (the effect can be  
important if an E-sail moves through a planetary shadow so that the tethers undergo rapid  
temperature variation) and a full electric simulation of the current flowing in the tether and 
its local voltage, including self-consistently the ohmic voltage drop along the tether (the 
effect is usually small unless the tether's length approaches 100 km). The electric model 
contains  a  potentiometer  between  each  tether  and  the  main  spacecraft  (for  individual 
control of the voltage of each tether), as well as the electron gun whose current and voltage  
can be set freely.
As forces acting on the tethers, besides the E-sail force also the gravity gradient force can 
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be included. The gravity gradient force becomes relevant near a massive body; for example  
if one decides to deploy the E-sail already in Earth orbit before entering the solar wind.
VESVISION-v2  includes  the  historical  satellite-measured  solar  wind  data  at  1  minute 
resolution from NASA's OMNIWeb project. The OMNIWeb 1 min data has been combined 
from different satellites and covers the time period from 1995 to 2008, i.e. more than one 
11-year  solar  cycle.  The  OMNIWeb  data  contains  some  gaps.  The  gaps  are  filled  by 
VESVISION-v2 by an algorithm which uses adjacent data such that the result is smooth 
and has similar statistical properties as the adjoining real data. The gap filling algorithm 
enables one to run the simulator for arbitrarily long time (up to 13 years) with realistic solar 
wind data input. The relevant variables used from OMNIWeb data are the plasma density 
and the plasma flow velocity vector.
VESVISION-v2 is written in C++, uses OpenGL based 3-D interactive visualisation and 
also supports parallel execution with OpenMP. VESVISION-v2 implements also an internal 
application programming interface (API) callable from plain C, intended for the user to 
write  an  E-sail  control  algorithm  in  C  and  testing  it  in  the  realistic  virtual  physics  
environment  provided  by  VESVISION-v2.  The  API  contains  simple  C-functions  for 
commanding elements such as the tether reel motors, the potentiometers and the electron 
gun current and voltage. It also contains functions for reading various virtual sensors such  
as the Remote Unit position sensor (which would be typically based on optical detection 
from the main spacecraft) and a solar wind density sensor (typically based on a simple  
omnidirectional electron spectrometer). A different programming language (plain C rather 
than C++) was selected for the user portion to isolate it  very well from the rest of the 
simulator:  the  E-sail  control  routine  written  by  the  user  can  only  interact  with  the 
underlying  simulator  by  using  the  restricted  set  of  API  C  functions.  While  similar  
encapsulation  could  have  been  achieved  by  simply  using  the  normal  C++  class 
mechanisms,  plain  C was  selected  because  it  is  typically used  for  programming flight 
software.

Figures 1 and 2 show examples of VESVISION-v2 screen. The upper left corner shows the 
time of the solar wind conditions and the time of the most recent tether rig rotation period. 
The upper right corner shows the gathered delta-v, the instantaneous electron gun voltage 
and potential  drops over  each tether  potentiometer  as  a  graphical  radial  bar  chart.  The 
bottom panel shows the solar wind data, velocity in blue in linear scale and plasma density 
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in beige in logarithmic scale. Original data gaps are shown as greyed areas. The panel rolls 
from right to left as the simulation proceeds, the “now” instant being the vertical yellow 
line in the middle of the screen. The upper panel shows the thrust history as red curve and 
the applied electron gun voltage as violet curve. A zoomable and rotatable 3-D plot of the 
E-sail tether rig is shown in the middle, with a blue arrow showing the instantaneous solar 
wind direction. Figure 2 is the same as Figure 1 except that the online help texts are showed 
because the user pressed “H”. The help texts show the key bindings by which the user can 
interact with the software. When help texts are shown, the rest of the graphics on the screen 
are slightly dimmed.
Table 1 lists the supported command line options. The same options can also be set through 
configuration file. Some graphical output related options which can also be set interactively 
by the user by keypresses are omitted from the list for brevity. Table 2 shows the internal C 
calls available for a user-written control algorithm. Not all of the available C API calls are  
used by typical control algorithm and some of them are only used for debugging.
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SWangle 0.0 Additional solar wing angle offset (deg)

record_frames false Record all drawn frames in pixmap files

max_resistance 1e9 Max. resistance setting of potentiometer (Ohm)

gun_maxcurrent 0.05 Max. current limit of e-gun (A)

gun_maxvoltage 4e4 Max. voltage limit of e-gun (V)

gun_perveance 6e-7 Max. perveance limit of e-gun (A/V^(3/2))

gun_maxpower 400 Max. power limit of e-gun (W)

circular_initial_auxtethers true Initialise auxtethers as circular instead of linear

fog true Use for effect in rendering

config “Vesvision.
conf”

Name of configuration file

eventfile “SDF.ves” Name of keypress events def. script file

tmax -1 Max. time of simulation (s; <0:infinity)

spinperiod 2500 Spin period (s)

L0init 20e3 Initial tether length (m)

t_forced_spinup 480 Initial period for smooth spin start (s)

rw 1.8e-5 Wire radius (m)

rwauxrel 1.0 Aux. vs. main tether wire radius

rwextrarel 1.0 Extra vs. main tether wire radius

rwstar 1e-3 Effective tether electric radius (m)

extratether_rel_length 0.5 Relative length of extratethers vs. main tethers

rhow 2.7e3 Tether material density (kg/m^3)

rhowauxrel 1.0 Aux. vs. main tether material density

rhowextrarel 1.0 Extra vs. main tether material density

Young 7.2e10 Young modulus of tether material (Pa)

Youngauxrel 1.0 Young modulus of aux. vs. main tether material

Youngextrarel 1.0 Young modulus of extra vs. main tether mat.

endmass 0.3 Remote unit mass at tip of each tether (kg)

endmass1_factor 1.0 Factor by which endmass of node 1 is different

scmass 1e3 Spacecraft body mass (kg)

auxmidmass 0.0 Point mass at middle of each auxtether (kg)

extraendmass 0.15 Extra point mass at tip of each extratether (kg)

endmassmethod_explicit true Whether  endmass  is  explicit  mass  point  or  tip 
enhancement of linear density lambda

CFL 0.7 Courant-Friedrichs-Lewy timestep parameter

dt_flightalgo 5.0 Time between calling synchr. flight algorithm (s)

material_damping 5e-4 Dimensionless  damping  coefficient  for  numerical 
stability

hoytether_angle 30 Hoytether diagonal/parallel angle (deg)
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Np 30 Number of discretisation points in one tether

Npaux -1 Number of discr. Points in ont auxtether

auxtethers false Whether we have auxtethers or not

exclude_auxtether1 false Exclude auxtether number 1 (nums start from 0)

exclude_extratether1 false Exclude extratether number 1

extratethers false Whether we have extratethers or not

coulomb_repulsion false Take  into  account  Coulomb  repulsion  of  tethers 
(approximately)

gravitygradient false Assume LEO gravity gradient

gravitygradient_alt 5e3 Orbital alt. (km) where grav. grad is calculated

auxtether_lengthcoeff 1.0 Factor by which auxtethers are longer than nominal 
circle

Nw 70 Number of tethers

realsw true Whether to use real solar wind data or not

yyyymmdd 20000101 Solar wind starting date YYYYMMDD

hhmm 0000 Solar wind starting hour and minute

sc_radius 1.0 Spacecraft radius (m)

nSW 7.3e6 Solar wind number density (1/m^3), if realsw=false

vSW 400e3 Solar wind speed (m/s), if realsw=false

gun_rel_energywidth 0.02 Electron gun beam delta-E/E

gun_min_energywidth 50.0 Electron gun delta-E for small energy E

reel_minspeed -0.1 Min. allowed outlet speed (m/s) of reel (pos.outward)

reel_maxspeed 0.1 Max. allowed outlet speed of reel

reel_maxacc 0.1 Max. allowed reel outlet acceleration (m/s^2)

r_AU 1.0 Solar distance in au

thermal_alpha 0.1 Wire optical absorptivity (one minus albedo)

thermal_epsilon 0.03 Wire infraed emissivity

thermal_expansion 2.31e-5 Wire thermal expansion coefficient

Table 1: Command line/config. file options for VESVISION-v2
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get_time() Return spacecraft time in seconds from start of simulation

get_potdrop(w) Return potential drop (volts) over control resistor of w'th tether

get_scpot() Return estimate of spacecraft (or electron gun anode) potential (volts) 
from electron detector

get_tether_tip_dir
ection(w,&ux,&uy
,&uz)

Return  unit  vector  to  the  tip  of  w'th  tether,  in  Sun-spaceraft 
coordinates, from the camera system

get_tether_root_di
rection(w,&ux,&u
y,&uz)

Return  unit  vector  along  root  of  w'th  tether,  in  Sun-spacecraft 
coordinates, from the camera system

get_tension(w) Return tension of w'th tether (newtons)

get_plasma_densit
y()

Return solar wind density estimate from electron detector (1/m^3)

get_solar_wind(&
n,&vx,&vy,&vz)

Return  solar  wind  parameters  from ion  detector  in  Sun-spacecraft 
coordinates and in SI units (1/m^3, m/s)

set_gun_CV(&I,
&V)

Set electron gun current (A) and voltage (V). Return 0 on success, 1 if 
one or both values were too large or too small. The values are set to a 
closest approximation in that case. The actual values set are returned 
in I and V.

set_resistance(w,
&R)

Set control resistor of w'th tether to R ohms. Return 0 on success, 1 if  
the value set was too large, 2 if it was too small. The values are set to 
a closest approximation in those cases. The actual value set is returned 
in R.

set_reel_speed(w,
v,t)

Set w'th tether reel into mode where it constantly reels out tether at 
speed 'v' (m/s). Negative speed means reeling in. The change from the 
present  reel  motion state takes 't'  seconds.  If  't'  is  too short  or  not 
positive, the motion change is carried out as quickly as the hardware 
allows. Before, reel mode can be any. During command, mode is 3. 
After, mode is 1 if speed is 0.0, otherwise 2.
Reel modes: (1) Steady, waiting for command, (2) Moving, waiting 
for command, (3) Executing speed change command, (4) Executing 
length change command

set_auxreel_speed
(w,v,t)

Same as set_reel_speed, but for auxiliary tether reels of the Remote 
Units. The speed 'v' is multiplied by a correction factor which is the 
ratio of the initial length of the auxiliary tether versus the main tether.  
Thus  you  can  pass  the  same  value  for  speed  as  you  do  for 
set_reel_speed() to obtain isometric expansion of contraction of the 
tether system.

set_extrareel_spee
d(w,v,t)

Same as set_reel_speed, but for extrareels of the Remote Units. Same 
comments apply for the correction factor as in set_auxreel_speed().

change_tether_len
gth(w,dL,t)

Reel  out  'dL'  metres  of  tether  from w'th reel.  Negative 'dL'  means 
reeling  in.  Before,  reel  mode  is  usually  1.  If  it  is  not,  a 
set_reel_speed(w,0,0)  command  is  implicitly  executed  first.  During 
command, mode is 4. After, mode is 1.

change_extratethe
r_length(w,dL,t)

Same as change_tether_length, but for extra tether.

get_reel_speed(w) Return outletting speed (m/s)  of  w'th  tether  reel  (positive  outward, 
negative inward) 
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get_tether_remain
ing_length(w)

Return estimated length of tether remaining on reel in metres

get_extratether_re
maining_length(w
)

Return estimated length of extratether remaining on reel in metres

get_tether_outlet_
length(w)

Return estimated length of deployed tether in metres

get_extratether_o
utlet_length(w)

Return estimated length of deployed extratether in metres

get_reel_comman
d_timeremain(w)

If w'th tether reel has an unfinished length or speed change command 
in execution (i.e., is in mode 3 or 4), return its estimated completion 
time in seconds, otherwise return 0.0

set_additional_for
ce(dFds)

For algorithm testing only: Set additional (constant) z-directed force 
per unit length (N/m) for all tethers. The setting is global and remains 
set until changed by this function. Notice that if and when the tethers 
are bent, this additional dFds_z has a component along the tether also, 
unlike  the  solar  wind  force  which  is  constructed  to  be  locally 
perpendicular to the tether.
The typical  use of this function is to use it  with zero electron gun 
power to simulate an ideally controllable sail with exactly adjustable 
and  constant  direction  thrust  vector.  Of  course,  in  the  final  flight 
algorithm, this function shouldn't be called.

write_message(ms
g)

Set msg string visible on screen

damping_mode_r
equested()

Returns  1  if  user  has  requested  "potential  damping  mode"  to  be 
applied by flight algorithm

turning_mode_req
uested()

Returns spiniplane turning mode that user has requested, if any: -2 for 
reverse Y-directed spinplane turning mode, -1 for reverse X-directed 
spinplane  turning mode,  0  for  no  turning  mode,  +1  for  X-directed 
spinplane turning mode, +2 for Y-directed spinplane turning mode

inclined_thrust_m
aximisation_mode
_requested()

Returns 1 if user has requested "inclined thrust maximisation mode" to 
be applied by flight algorithm

tether0_cut() Returns 1 if tether 0 has been cut by user definition at this time

set_thrust_scalar(
w, F)

Set  Remote  Unit  thruster  thrust  scalar  for  w'th  tether  to  value  F 
newtons

set_thrust_vector(
w,Fx,Fy,Fz)

Set  Remote  Unit  thruster  thrust  vector  for  w'th  tether  to  value  F 
newtons

Table 2: Internal control algorithm C API of VESVISION-v2

  4. VESVISION-v3
VESVISION-v3 addresses  the  following two shortcomings  of  VESVISION-v2:  (1)  the 
order of accuracy of the underlying differential  equation solver and (2) applicability to  
possibly interesting non-traditional E-sail configurations which do not necessarily consist 
of a single main spacecraft with a number of radial tethers and thus cannot be simulated  
with  VESVISION-v2.  When  addressing  these  additional  needs,  not  all  features  of 
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VESVISION-v2 were found feasible  to  retain,  however.  Hence VESVISION-v3 cannot 
replace VESVISION-v2 in all tasks. Hence the domains of applicability of the two versions 
are distinct, but with a wide overlap.
VESVISION-v3 models an arbitrary collection of  rigid bodies  and point  masses  which 
interact with arbitrary force fields and are influenced by arbitrary external forces. For each 
point mass the modelled degrees of freedom are position and velocity. For rigid bodies, also 
the attitude of the body described by a unit  quaternion and the angular momentum are 
included. The collection of bodies yields a large system of ordinary differential equations 
(ODEs) which is solved by a highly accurate 8 th order Runge-Kutta method described in 
AD-1. According to our experience with this integrator and its built-in error estimation we 
consider  that  its  truncation error is  small  enough to be considered insignificant  for  the 
simulation  task  at  hand.  Thus  the  main  approximation  in  VESVISION-v3  is  the 
replacement of the continuous tether system by a finite set of discrete bodies (rigid bodies 
and/or point masses), not the routine which integrates said discrete body equations.
The general-purpose modelling core of VESVISION-v3 is written with C++ and similarly 
to  VESVISION-v2  it  implements  interactive  realtime  OpenGL visualisation  as  well  as 
supports OpenMP parallelisation. In VESVISION-v3, however, the user must define his 
mechanical model not with command line options, but flexibly with Lua scripting language 
[AD-2]. In this way, the model definition is well isolated from the simulator core and the 
user has complete freedom in how to set up his discretised model of a mechanical system.  
Technically, it would be possible to use VESVISION-v3 for simulating mechanical models 
which are quite unrelated to the E-sail.
Table 3 lists the Lua commands which are available to the user for defining the mechanical 
model and controlling it. Table  4 describes functions that the user may define in the Lua 
script to implement online control of the model. Tables 5 and 6  show listings of a minimal 
two-body model and a somewhat more complicated LEO tether model which creates two 
point masses (spacecraft and tether end mass) connected by a massless tether and computes 
magnetic Lorentz force and gravity gradient forces acting on such single-tether system in 
LEO. Our  production-scale Lua scripts  which implement  E-sail  models with auxtethers 
have typically 500-800 lines. Figures  and  show screen dumps of VESVISION-v3 run with 
a Lua model  that  has created a 12-tether auxtethered E-sail,  tethers being modelled by 
chains of point masses connected by massless springs with given rest length. The violet box 
goes from (-1 km,-1 km) to (+1 km,+1km); it is drawn just to visualise the scale. The tether 
length is 2.4 km.
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Figure  3:  VESVISION-v3  model  with  
12 auxiliary tethers.

Figure  4:  Same  as  Fig.3 But  with  
online help texts
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vesSetWindowTitle(“title”) Set title of GLUT window to given string, default is "Virtual 
Electric Sail".

vesSetParams({param1=val
1,...})

Set numeric global parametres, supported ones are:
eps_rel: Relative epsilon for ODE integrator, default 1e-7
eps_abs:Absolute epsilon for ODE integrator, default 1e-10
dt:Timestep, default 0.5 s
tmax: Time when stop simulation, default -1 (never stop)
rcamera: Distance of camera from origin, default 100 m
gxx: Gravity field gx derivative with respect to x
gyy: Gravity field gy derivative with respect to y
gzz: Gravity field gz derivative with respect to z
solarwind_startepoch
planetGM: G*M of planet centred at origin (0,0,0)

obj=vesCreateBody(type,
{prop1=val1,...})

Create  new object,  supported  types  are  "box",  "cylinder" 
and "pointmass".  Returns  a  handle  that  can  be passed  to 
vesDefineInteractionForce. Supported object properties:
mass(scalar): Mass of object (kg)
radius(scalar): Radius of cylinder object (m)
height(scalar): Height of cylinder object (m)
boxsize(3-vector): Depth,width and height of box object (m)
rCM(3-vector):  Initial  object's  geometric centroid position 
(m)(equal to centre of mass CM except for prisms, hence 
name)
v(3-vector): Initial velocity of object's CM (m/s)
omega(3-vector): Initial angular velocity of object (1/s)
rotateangle(scalar): Object's attitude is initially rotated (rad)
rotateaxis(3-vector):  Direction  around  which  rotateangle 
rotation is done
rotateangle2(scalar):  Possible  second  rotation  parameter 
(rad)
rotataeaxis2(3-vector): Possible second rotation axis
colour(3-vector): Object's RGB colour used for visualisation 
(0..1)

data=vesGetBodyData(obj) Return table of data of given body (the argument must be 
previously returned by vesCreateBody). Currently for point 
masses, 'data' contains 7 named fields:
type: "pointmass", "cylinder" or "box"
mass: mass of particle (kg)
x: x-coordinate position of body's centre of mass (m)
y: y-coordinate position of body's centre of mass (m)
z: z-coordinate position of body's centre of mass (m)
vx: velocity x component of body's centre of mass (m/s)
vy: velocity y component of body's centre of mass (m/s)
vz: velocity z component of body's centre of mass (m/s)
In case of a rigid body, in addition seven additional fields 
are stored in the table. The quaternion defining the attitude:
qs: s-component of the attitude quaternion (cos(alpha/2))
qx:x-component of the attitude quaternion (sin(alpha/2)*nx)
qy:y-component of the attitude quaternion (sin(alpha/2)*ny)
qz:z-component of the attitude quaternion (sin(alpha/2)*nz)
as well as the angular momentum:
Lx: x-component of angular momentum (Nms)
Ly: y-component of angular momentum (Nms)
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Lz: z-component of angular momentum (Nms)

vesRedefineBodyData(obj,d
ata)

Set new data values for given object.  The table 'data' can 
contain named entries x,y,z,vx,vy,vz. For rigid bodies, the 
additional entries qs,qx,qy,qz,Lx,Ly,Lz can be given as well. 
Missing  entries  are  not  set  (they retain their  old values). 
Additional named entries are silently ignored.

f=vesDefineInteractionForce
(objA,objB,rA,rB,
{prop1=val1,...})

Define inter-object  force between objects A and B which 
must be handles previously returned by vesCreateBody. The 
forces affect points rA (given in A's object coordinates) and 
rB (given in B's object coordinates). The force is a central 
force  along the  line  connecting  rA and rB,  defined  by a 
spring  constant  (F  =  -k*r)  and  possible  hysteretic  and/or 
viscous damping coefficient. A force handle is returned that 
can be passed to vesRedefineInteractionForce later.
Supported properties:
springconst: Spring constant k, default 1e-3 N/m
r0: Length offset, F = -k*max(r-r0,0), default 0.0 m
r0dot: Time derivative of r0 (true r0(t)=r0+r0dot*t), default 
0.0 m/s
rel_lossmodulus: Loss modulus relative to spring constant, 
default 0.0
dampconst: Viscous damping constant D, F = -D*v, default 
0.0 Ns/m
longest_rateindependent_period:  Maximum  oscillation 
period for which hystereic occurs, default 600 s

vesRedefineInteractionForce
(f,{prop1=val1,...})

Redefine inter-object force, f must  be previously returned 
by vesDefineInteractionForce. Supported properties are the 
same as for vesDefineInteractionForce.

val=vesGetForceValue(f) Get instantaous value of the interaction force f where f is a 
handle  previously  returned  by  vesDefineInteractionForce. 
Attractive  force  is  returned  as  positive  and  repulsive  as 
negative.

vesSetExternalForce(obj,F) Sets external force (3-vector) for the given object

vesAddExternalForce(obj,F) Adds to external force (3-vector) for the given object (i.e., 
same  as  vesSetExternalForce,  but  adds  to  the  old  value 
instead of overwriting it).

dv=vesGetDeltav() Returns accumulated delta-v of the centre of mass (3-vector, 
m/s)

vesSetInfoString(s) Sets "info" string written at the middle top of screen

rho,v=vesGetSolarWind(t) Returns solar wind density (scalar, 1/m3) and velocity (3-
vector, m/s) corresponding to given time (seconds from start 
of simulation)

vesDumpState(fn) Dump everything to the given restartable CDF state file

vesRestoreState(fn) Restore state from previously dumped CDF file

Table 3: Lua callable functions of VESVISION-v3
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vesPeriodicTask(t) If this function is defined by the user's Lua script, it is called at dt 
intervals before the ODE integrator. The argument t is the global time 
in seconds. Typically vesPeriodicTask could for example make calls 
to  vesRedefineInteractionForce  to  modify  the  behaviour  of  the 
simulation.

key_was_pressed=
vesKeypressHandl
er(key,t)

If  this  function  is  defined  by  the  user's  Lua  script,  it  is  called 
whenever  a  key  is  pressed  on  the  graphics  window.  The  first 
argument  'key'  is  the  pressed  key as  a  one-length  string  and  the 
second argument t is the global time in seconds. The function must 
return a single Boolean value which is true if the routine recognised 
the key and false otherwise. The default control keys of vesvision are 
checked  only  if  the  return  value  was  false,  so  the 
vesKeypressHandler  takes  precedence  over  vesvision's  default  key 
bindings.

Table 4: Special optional user-defineable functions in VESVISION-v3

mass1 = vesCreateBody("box",{mass=0.001,boxsize={0.1,0.1,0.1}})
mass2 = vesCreateBody("pointmass",{mass=1e-3,rCM={0.1,0,0}})
vesDefineInteractionForce(mass1,mass2,{0,0,0},{0,0,0},{springconst=1e-
4,dampconst=0.03e-4})

Table 5: A minimal Lua script to implement a two-mass system in VESVISION-v3
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tether = {}
----------------------------------
R_E = 6371.2e3
GM_E = 5.9723e24*6.6742e-11
alt = 700e3
dt = 10.0
m1 = 3.0
m2 = 1.0
spinperiod = 900*8
tether.Young = 0.1 * 70e9
tether.rel_lossmodulus = 0.02
tether.rwbase = 37.5e-6
tether.len = 1e3
diptilt = 11*(math.pi/180)
----------------------------------
function CheckNum(x)
   if type(x) ~= "number" then

  print(debug.traceback("*** CheckNum: table value is not numeric",2))
  error("")

   end
   return x
end
----------------------------------
vesSetParams({eps_rel=1e-5,eps_abs=1e-
6,dt=dt,rcamera=CheckNum(15*R_E),planetGM=CheckNum(GM_E)})
vorbit = math.sqrt(GM_E/(R_E+alt)) -- initial orbital speed of CM
L1 = tether.len*m2/(m1+m2)
L2 = tether.len*m1/(m1+m2)
omega = 2*math.pi/spinperiod
tension = m1*L1*omega^2
print(string.format("Tether tension = %g cN",100*tension))
v1 = L1*omega
v2 = L2*omega
mass1=vesCreateBody("pointmass",{mass=CheckNum(m1),rCM={0,0,-(R_E+alt)-
L1},v={vorbit-v1,0,0}})
mass2=vesCreateBody("pointmass",{mass=CheckNum(m2),rCM={0,0,-(R_E+alt)
+L2},v={vorbit+v2,0,0}})
tether.springconst = tether.Young*(math.pi*tether.rwbase^2)/tether.len
forceparams =
   {springconst=CheckNum(tether.springconst),

rel_lossmodulus=CheckNum(tether.rel_lossmodulus),
r0=CheckNum(tether.len)}

tether.force = vesDefineInteractionForce(mass1,mass2,{0,0,0},{0,0,0},forceparams)
fp = io.open("leotether.dat","w")
fp:write("# t x y z tension\n")
----------------------------------
function Bmodel(r,t)
   local dipmom = -8e22
   local omegaE = 2*math.pi/(24*3600.0)
   local Mz = dipmom*math.cos(diptilt)
   local Mxy = dipmom*math.sin(diptilt)
   local M = Vector.new({Mxy*math.cos(omegaE*t),Mxy*math.sin(omegaE*t),Mz})
   local rmagn2 = r[1]^2 + r[2]^2 + r[3]^2
   local rmagn = math.sqrt(rmagn2)

13



WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

   local ru = Normalise(r)
   return (1e-7/(rmagn2*rmagn))*((3*DotProduct(M,ru))*ru - M)
end
----------------------------------
function vesPeriodicTask(t)
   -- m1 is electron emitter
   -- local coordinates, origin is CM of body pair: m1 is at -L1, m2 is at +L2
   -- current is I(x) = I0*(L2-x)/(L1+L2)
   -- force per length is I(x) x B = I(x)*(u x B) where u is unit vector along tether, pointing  
from m1 to m2
   -- force on tether is F=integrate(dx*I(x),x=-L1..L2)*(uxB) = I0*(uxB)*(1/2)*(L1+L2)
   --  torque  M  =  integrate(rxdF)  =  u  x  integrate(dx*x*(uxB)*I(x))  = 
(ux(uxB))*I0*(1/6)*(L2-2*L1)*(L1+L2)
   --          = (1/3)*(L2-2*L1)*(uxF)
   --          = ((u.B)u-B)*I0*(1/6)*(L2-2*L1)*(L1+L2)
   -- F1=(1-s)*F, F2=s*F, 0<=s<=1, find s from correct torque
   -- torque M2 = u*L2 x F2 = L2*s*(uxF)
   -- torque M1 = (-u*L1) x F1 = -L1*(1-s)*(uxF)
   -- demand M1+M2=M: L2*s-L1*(1-s) = (1/3)*(L2-2*L1) ==> s=1/3
   -- ==> F1=(2/3)*F, F2=(1/3)*F
   local I0 = 30e-3
   local data1 = vesGetBodyData(mass1)
   local data2 = vesGetBodyData(mass2)
   local r1 = Vector.new({data1.x,data1.y,data1.z})
   local r2 = Vector.new({data2.x,data2.y,data2.z})
   local v1 = Vector.new({data1.vx,data1.vy,data1.vz})
   local v2 = Vector.new({data2.vx,data2.vy,data2.vz})
   local rmid = (m1*r1+m2*r2)/(m1+m2)
   local vmid = (m1*v1+m2*v2)/(m1+m2)
   local B = Bmodel(rmid,t)
   local u = Normalise(r2-r1)
   local F = (I0*0.5*tether.len)*CrossProduct(u,B)
   if (DotProduct(F,vmid) < 0) then

  local F1 = (2.0/3.0)*F
  local F2 = (1.0/3.0)*F
  vesSetExternalForce(mass1,F1)
  vesSetExternalForce(mass2,F2)

   else
  vesSetExternalForce(mass1,{0,0,0})
  vesSetExternalForce(mass2,{0,0,0})

   end
  fp:write(string.format(
"%g %g %g %g %g\n",t,rmid[1],rmid[2],rmid[3],vesGetForceValue(tether.force)))
end

Table 6: An exemplary VESVISION-v3 Lua script for modelling a satellite in LEO  
which has deployed a massless tether with an end mass and which is affected by  
Lorentz and gravity gradient forces. Use of customised Lua 3-vector utility class  
and simple text file output are also demonstrated. Lines starting by double minus  
signs are comments.
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  5. Conclusions
Two numerical models, VESVISION-v2 and VESVISION-v3 have been created and are in 
active everyday use for simulating the dynamical behaviour of E-sails and related systems. 
Functionality of the two versions is partly overlapping and partly complementary. Version 
v2 is  more E-sail  specific and (possibly)  less accurate  in its  numerical  implementation 
while version v3 is more generic (can simulate and arbitrary collection of point masses and 
rigid bodies interacting by arbitrary forces) and its integrator is very accurate, but the code  
only  simulates  the  mechanical  behaviour  of  the  tethers,  not  their  self-consistent  
electrodynamics (unless the user writes such routines himself in Lua). Most of our E-sail 
models have been run using both tools using a variety of different approximations (for 
example, tethers have been modelled as chains of point masses as well as chains of rigid  
bars in version 3) and the results have been found similar. Version 2 is usually faster which 
has enables longer duration simulations than version 3.
It is a natural question to ask if it would be feasible to have only one tool which combines  
the benefits of both versions i.e. provides flexibility, very accurate integration and full E-
sail specific physics models. The main nontrivial challenge in providing such tool would be 
to have a modelling framework of the tethers' self-consistent electrodynamics (including 
self-consistent computation of the voltage along the tether which takes into account ohmic 
potential drop) which is compatible with the high-order ODE solver. This challenge arises  
because a natural framework for formulating tether electrodynamics is a partial differential  
equation  while  the  high-accuracy  mechanical  framework  of  version  3  uses  ordinary 
differential equation, ODE. Also, there is the tradeoff of speed and accuracy. Version 2 is 
sometimes  significantly  faster  than  version  3  and  as  such  remains  valuable.  Our 
recommendation  for  now  is  to  continue  using  both  models.  In  our  opinion,  this  also 
increases  reliability  of  the  analysis  because  the  two  models  have  been  developed 
independently and are using different mathematical modelling approaches.
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