
WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

ESAIL D51.1
Description of E-sail dynamic

simulator codes

Work Package: WP 51

Version: Version 1.0

Prepared by: Finnish Meteorological Institute,
Pekka Janhunen

Time: Helsinki, May 24th, 2013

Coordinating person: Pekka Janhunen, pekka.janhunen@fmi.fi

(List of participants:)

Participant no. Participant organisation Abbrev. Country

1 (Coordinator) Finnish Meteorological Institute FMI Finland

Table of Contents
1. Applicable documents...1
2. Introduction..2
3. VESVISION-v2..2
4. VESVISION-v3..8
5. Conclusions...15

 1. Applicable documents
AD 1: Press, W.H., Teukolsky, S.A., Vetterling, W.T. And Flannery, B.P., ‐ Numerical
Recipes, The art of scientific computing, 3rd edition, Cambridge, 2007
AD 2: ‐ http://www.lua.org
AD-3: http://omniweb.gsfc.nasa.gov

1

http://www.lua.org/
http://omniweb.gsfc.nasa.gov/

WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

 2. Introduction
This document presents two simulation models developed for simulating the dynamical
behaviour of the E-sail tether rig. The first described model VESVISION-v2 can simulate
the spinning E-sail rig with full physics (tether elasticity, thermal expansion, electric
resistivity etc.) and also includes the simulate tether outreeling (change of tether length)
and uses a second order numerical solver for the 1-D time-dependent partial differential
equations which governs the tethers. The second described model VESVISION-v3 provides
a highly accurate 8th order numerical ordinary differential equation solver and a general
framework for simulating and arbitrary collection of rigid bodies, point masses and their
interaction forces, as well as arbitrary external forces. Both models support OpenMP
parallel execution and fast execution was an important design goal. Both models also
employ OpenGL based realtime visualisation and user interaction. The entire VESVISION-
v2 and the core of VESVISION-v3 is written in C++. In VESVISION-v3 the model is
defined flexibly by a Lua [AD-2] script which the user can easily modify or write new
ones. In VESVISION-v2, the user can write his E-sail control algorithm in plain C. In that
way, VESVISION-v2 can serve as a “flight simulator” for testing various E-sail control
algorithms in realistic solar wind conditions.

 3. VESVISION-v2
The VESVISION-v2 code (VES=Virtual Electric Sail) models the tether as a 1-D
continuous string which has zero stiffness but finite elasticity and thermal expansion. The
formulation also includes the relevant mass flow terms at the spacecraft end to allow
simulation of tether reeling (changing the tether's length at some speed which is an arbitrary
prescribed function of time). The tips of the tethers can contain Remote Units of given mass
(modelled as point masses) and the tips can also be connected together by auxiliary tethers
(with given mass per length and given elastic properties). There is also a possibility to add
“extra” radial tethers with free ends pointing outward from the Remote Units. The extra
tethers can also contain their own end masses. The main spacecraft is simulated by a point
mass from the point of view of tether dynamics. To study potential precession and tumbling
of the main spacecraft, it can also be modelled as a rigid body which responds to the
torques coming from the tethers. The approximation made in this case is that the main
spacecraft is very small compared to the length of the tethers so that the main spacecraft's
angular momentum is negligible in comparison to the angular momentum of the tether rig
(the self-consistent main simulation treats the main spacecraft as a point mass, but a
solution for a rigid body version of the main spacecraft is computed afterwards without
backreaction).
VESVISION-v2 contains models for thermal expansion of the tethers (the effect can be
important if an E-sail moves through a planetary shadow so that the tethers undergo rapid
temperature variation) and a full electric simulation of the current flowing in the tether and
its local voltage, including self-consistently the ohmic voltage drop along the tether (the
effect is usually small unless the tether's length approaches 100 km). The electric model
contains a potentiometer between each tether and the main spacecraft (for individual
control of the voltage of each tether), as well as the electron gun whose current and voltage
can be set freely.
As forces acting on the tethers, besides the E-sail force also the gravity gradient force can

2

WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

be included. The gravity gradient force becomes relevant near a massive body; for example
if one decides to deploy the E-sail already in Earth orbit before entering the solar wind.
VESVISION-v2 includes the historical satellite-measured solar wind data at 1 minute
resolution from NASA's OMNIWeb project. The OMNIWeb 1 min data has been combined
from different satellites and covers the time period from 1995 to 2008, i.e. more than one
11-year solar cycle. The OMNIWeb data contains some gaps. The gaps are filled by
VESVISION-v2 by an algorithm which uses adjacent data such that the result is smooth
and has similar statistical properties as the adjoining real data. The gap filling algorithm
enables one to run the simulator for arbitrarily long time (up to 13 years) with realistic solar
wind data input. The relevant variables used from OMNIWeb data are the plasma density
and the plasma flow velocity vector.
VESVISION-v2 is written in C++, uses OpenGL based 3-D interactive visualisation and
also supports parallel execution with OpenMP. VESVISION-v2 implements also an internal
application programming interface (API) callable from plain C, intended for the user to
write an E-sail control algorithm in C and testing it in the realistic virtual physics
environment provided by VESVISION-v2. The API contains simple C-functions for
commanding elements such as the tether reel motors, the potentiometers and the electron
gun current and voltage. It also contains functions for reading various virtual sensors such
as the Remote Unit position sensor (which would be typically based on optical detection
from the main spacecraft) and a solar wind density sensor (typically based on a simple
omnidirectional electron spectrometer). A different programming language (plain C rather
than C++) was selected for the user portion to isolate it very well from the rest of the
simulator: the E-sail control routine written by the user can only interact with the
underlying simulator by using the restricted set of API C functions. While similar
encapsulation could have been achieved by simply using the normal C++ class
mechanisms, plain C was selected because it is typically used for programming flight
software.

Figures 1 and 2 show examples of VESVISION-v2 screen. The upper left corner shows the
time of the solar wind conditions and the time of the most recent tether rig rotation period.
The upper right corner shows the gathered delta-v, the instantaneous electron gun voltage
and potential drops over each tether potentiometer as a graphical radial bar chart. The
bottom panel shows the solar wind data, velocity in blue in linear scale and plasma density

3

Figure 1: Screen dump from
VESVISION-v2

Figure 2: VESVISION-v2 with help
texts on

WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

in beige in logarithmic scale. Original data gaps are shown as greyed areas. The panel rolls
from right to left as the simulation proceeds, the “now” instant being the vertical yellow
line in the middle of the screen. The upper panel shows the thrust history as red curve and
the applied electron gun voltage as violet curve. A zoomable and rotatable 3-D plot of the
E-sail tether rig is shown in the middle, with a blue arrow showing the instantaneous solar
wind direction. Figure 2 is the same as Figure 1 except that the online help texts are showed
because the user pressed “H”. The help texts show the key bindings by which the user can
interact with the software. When help texts are shown, the rest of the graphics on the screen
are slightly dimmed.
Table 1 lists the supported command line options. The same options can also be set through
configuration file. Some graphical output related options which can also be set interactively
by the user by keypresses are omitted from the list for brevity. Table 2 shows the internal C
calls available for a user-written control algorithm. Not all of the available C API calls are
used by typical control algorithm and some of them are only used for debugging.

4

WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

SWangle 0.0 Additional solar wing angle offset (deg)

record_frames false Record all drawn frames in pixmap files

max_resistance 1e9 Max. resistance setting of potentiometer (Ohm)

gun_maxcurrent 0.05 Max. current limit of e-gun (A)

gun_maxvoltage 4e4 Max. voltage limit of e-gun (V)

gun_perveance 6e-7 Max. perveance limit of e-gun (A/V^(3/2))

gun_maxpower 400 Max. power limit of e-gun (W)

circular_initial_auxtethers true Initialise auxtethers as circular instead of linear

fog true Use for effect in rendering

config “Vesvision.
conf”

Name of configuration file

eventfile “SDF.ves” Name of keypress events def. script file

tmax -1 Max. time of simulation (s; <0:infinity)

spinperiod 2500 Spin period (s)

L0init 20e3 Initial tether length (m)

t_forced_spinup 480 Initial period for smooth spin start (s)

rw 1.8e-5 Wire radius (m)

rwauxrel 1.0 Aux. vs. main tether wire radius

rwextrarel 1.0 Extra vs. main tether wire radius

rwstar 1e-3 Effective tether electric radius (m)

extratether_rel_length 0.5 Relative length of extratethers vs. main tethers

rhow 2.7e3 Tether material density (kg/m^3)

rhowauxrel 1.0 Aux. vs. main tether material density

rhowextrarel 1.0 Extra vs. main tether material density

Young 7.2e10 Young modulus of tether material (Pa)

Youngauxrel 1.0 Young modulus of aux. vs. main tether material

Youngextrarel 1.0 Young modulus of extra vs. main tether mat.

endmass 0.3 Remote unit mass at tip of each tether (kg)

endmass1_factor 1.0 Factor by which endmass of node 1 is different

scmass 1e3 Spacecraft body mass (kg)

auxmidmass 0.0 Point mass at middle of each auxtether (kg)

extraendmass 0.15 Extra point mass at tip of each extratether (kg)

endmassmethod_explicit true Whether endmass is explicit mass point or tip
enhancement of linear density lambda

CFL 0.7 Courant-Friedrichs-Lewy timestep parameter

dt_flightalgo 5.0 Time between calling synchr. flight algorithm (s)

material_damping 5e-4 Dimensionless damping coefficient for numerical
stability

hoytether_angle 30 Hoytether diagonal/parallel angle (deg)

5

WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

Np 30 Number of discretisation points in one tether

Npaux -1 Number of discr. Points in ont auxtether

auxtethers false Whether we have auxtethers or not

exclude_auxtether1 false Exclude auxtether number 1 (nums start from 0)

exclude_extratether1 false Exclude extratether number 1

extratethers false Whether we have extratethers or not

coulomb_repulsion false Take into account Coulomb repulsion of tethers
(approximately)

gravitygradient false Assume LEO gravity gradient

gravitygradient_alt 5e3 Orbital alt. (km) where grav. grad is calculated

auxtether_lengthcoeff 1.0 Factor by which auxtethers are longer than nominal
circle

Nw 70 Number of tethers

realsw true Whether to use real solar wind data or not

yyyymmdd 20000101 Solar wind starting date YYYYMMDD

hhmm 0000 Solar wind starting hour and minute

sc_radius 1.0 Spacecraft radius (m)

nSW 7.3e6 Solar wind number density (1/m^3), if realsw=false

vSW 400e3 Solar wind speed (m/s), if realsw=false

gun_rel_energywidth 0.02 Electron gun beam delta-E/E

gun_min_energywidth 50.0 Electron gun delta-E for small energy E

reel_minspeed -0.1 Min. allowed outlet speed (m/s) of reel (pos.outward)

reel_maxspeed 0.1 Max. allowed outlet speed of reel

reel_maxacc 0.1 Max. allowed reel outlet acceleration (m/s^2)

r_AU 1.0 Solar distance in au

thermal_alpha 0.1 Wire optical absorptivity (one minus albedo)

thermal_epsilon 0.03 Wire infraed emissivity

thermal_expansion 2.31e-5 Wire thermal expansion coefficient

Table 1: Command line/config. file options for VESVISION-v2

6

WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

get_time() Return spacecraft time in seconds from start of simulation

get_potdrop(w) Return potential drop (volts) over control resistor of w'th tether

get_scpot() Return estimate of spacecraft (or electron gun anode) potential (volts)
from electron detector

get_tether_tip_dir
ection(w,&ux,&uy
,&uz)

Return unit vector to the tip of w'th tether, in Sun-spaceraft
coordinates, from the camera system

get_tether_root_di
rection(w,&ux,&u
y,&uz)

Return unit vector along root of w'th tether, in Sun-spacecraft
coordinates, from the camera system

get_tension(w) Return tension of w'th tether (newtons)

get_plasma_densit
y()

Return solar wind density estimate from electron detector (1/m^3)

get_solar_wind(&
n,&vx,&vy,&vz)

Return solar wind parameters from ion detector in Sun-spacecraft
coordinates and in SI units (1/m^3, m/s)

set_gun_CV(&I,
&V)

Set electron gun current (A) and voltage (V). Return 0 on success, 1 if
one or both values were too large or too small. The values are set to a
closest approximation in that case. The actual values set are returned
in I and V.

set_resistance(w,
&R)

Set control resistor of w'th tether to R ohms. Return 0 on success, 1 if
the value set was too large, 2 if it was too small. The values are set to
a closest approximation in those cases. The actual value set is returned
in R.

set_reel_speed(w,
v,t)

Set w'th tether reel into mode where it constantly reels out tether at
speed 'v' (m/s). Negative speed means reeling in. The change from the
present reel motion state takes 't' seconds. If 't' is too short or not
positive, the motion change is carried out as quickly as the hardware
allows. Before, reel mode can be any. During command, mode is 3.
After, mode is 1 if speed is 0.0, otherwise 2.
Reel modes: (1) Steady, waiting for command, (2) Moving, waiting
for command, (3) Executing speed change command, (4) Executing
length change command

set_auxreel_speed
(w,v,t)

Same as set_reel_speed, but for auxiliary tether reels of the Remote
Units. The speed 'v' is multiplied by a correction factor which is the
ratio of the initial length of the auxiliary tether versus the main tether.
Thus you can pass the same value for speed as you do for
set_reel_speed() to obtain isometric expansion of contraction of the
tether system.

set_extrareel_spee
d(w,v,t)

Same as set_reel_speed, but for extrareels of the Remote Units. Same
comments apply for the correction factor as in set_auxreel_speed().

change_tether_len
gth(w,dL,t)

Reel out 'dL' metres of tether from w'th reel. Negative 'dL' means
reeling in. Before, reel mode is usually 1. If it is not, a
set_reel_speed(w,0,0) command is implicitly executed first. During
command, mode is 4. After, mode is 1.

change_extratethe
r_length(w,dL,t)

Same as change_tether_length, but for extra tether.

get_reel_speed(w) Return outletting speed (m/s) of w'th tether reel (positive outward,
negative inward)

7

WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

get_tether_remain
ing_length(w)

Return estimated length of tether remaining on reel in metres

get_extratether_re
maining_length(w
)

Return estimated length of extratether remaining on reel in metres

get_tether_outlet_
length(w)

Return estimated length of deployed tether in metres

get_extratether_o
utlet_length(w)

Return estimated length of deployed extratether in metres

get_reel_comman
d_timeremain(w)

If w'th tether reel has an unfinished length or speed change command
in execution (i.e., is in mode 3 or 4), return its estimated completion
time in seconds, otherwise return 0.0

set_additional_for
ce(dFds)

For algorithm testing only: Set additional (constant) z-directed force
per unit length (N/m) for all tethers. The setting is global and remains
set until changed by this function. Notice that if and when the tethers
are bent, this additional dFds_z has a component along the tether also,
unlike the solar wind force which is constructed to be locally
perpendicular to the tether.
The typical use of this function is to use it with zero electron gun
power to simulate an ideally controllable sail with exactly adjustable
and constant direction thrust vector. Of course, in the final flight
algorithm, this function shouldn't be called.

write_message(ms
g)

Set msg string visible on screen

damping_mode_r
equested()

Returns 1 if user has requested "potential damping mode" to be
applied by flight algorithm

turning_mode_req
uested()

Returns spiniplane turning mode that user has requested, if any: -2 for
reverse Y-directed spinplane turning mode, -1 for reverse X-directed
spinplane turning mode, 0 for no turning mode, +1 for X-directed
spinplane turning mode, +2 for Y-directed spinplane turning mode

inclined_thrust_m
aximisation_mode
_requested()

Returns 1 if user has requested "inclined thrust maximisation mode" to
be applied by flight algorithm

tether0_cut() Returns 1 if tether 0 has been cut by user definition at this time

set_thrust_scalar(
w, F)

Set Remote Unit thruster thrust scalar for w'th tether to value F
newtons

set_thrust_vector(
w,Fx,Fy,Fz)

Set Remote Unit thruster thrust vector for w'th tether to value F
newtons

Table 2: Internal control algorithm C API of VESVISION-v2

 4. VESVISION-v3
VESVISION-v3 addresses the following two shortcomings of VESVISION-v2: (1) the
order of accuracy of the underlying differential equation solver and (2) applicability to
possibly interesting non-traditional E-sail configurations which do not necessarily consist
of a single main spacecraft with a number of radial tethers and thus cannot be simulated
with VESVISION-v2. When addressing these additional needs, not all features of

8

WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

VESVISION-v2 were found feasible to retain, however. Hence VESVISION-v3 cannot
replace VESVISION-v2 in all tasks. Hence the domains of applicability of the two versions
are distinct, but with a wide overlap.
VESVISION-v3 models an arbitrary collection of rigid bodies and point masses which
interact with arbitrary force fields and are influenced by arbitrary external forces. For each
point mass the modelled degrees of freedom are position and velocity. For rigid bodies, also
the attitude of the body described by a unit quaternion and the angular momentum are
included. The collection of bodies yields a large system of ordinary differential equations
(ODEs) which is solved by a highly accurate 8 th order Runge-Kutta method described in
AD-1. According to our experience with this integrator and its built-in error estimation we
consider that its truncation error is small enough to be considered insignificant for the
simulation task at hand. Thus the main approximation in VESVISION-v3 is the
replacement of the continuous tether system by a finite set of discrete bodies (rigid bodies
and/or point masses), not the routine which integrates said discrete body equations.
The general-purpose modelling core of VESVISION-v3 is written with C++ and similarly
to VESVISION-v2 it implements interactive realtime OpenGL visualisation as well as
supports OpenMP parallelisation. In VESVISION-v3, however, the user must define his
mechanical model not with command line options, but flexibly with Lua scripting language
[AD-2]. In this way, the model definition is well isolated from the simulator core and the
user has complete freedom in how to set up his discretised model of a mechanical system.
Technically, it would be possible to use VESVISION-v3 for simulating mechanical models
which are quite unrelated to the E-sail.
Table 3 lists the Lua commands which are available to the user for defining the mechanical
model and controlling it. Table 4 describes functions that the user may define in the Lua
script to implement online control of the model. Tables 5 and 6 show listings of a minimal
two-body model and a somewhat more complicated LEO tether model which creates two
point masses (spacecraft and tether end mass) connected by a massless tether and computes
magnetic Lorentz force and gravity gradient forces acting on such single-tether system in
LEO. Our production-scale Lua scripts which implement E-sail models with auxtethers
have typically 500-800 lines. Figures and show screen dumps of VESVISION-v3 run with
a Lua model that has created a 12-tether auxtethered E-sail, tethers being modelled by
chains of point masses connected by massless springs with given rest length. The violet box
goes from (-1 km,-1 km) to (+1 km,+1km); it is drawn just to visualise the scale. The tether
length is 2.4 km.

9
Figure 3: VESVISION-v3 model with
12 auxiliary tethers.

Figure 4: Same as Fig.3 But with
online help texts

WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

vesSetWindowTitle(“title”) Set title of GLUT window to given string, default is "Virtual
Electric Sail".

vesSetParams({param1=val
1,...})

Set numeric global parametres, supported ones are:
eps_rel: Relative epsilon for ODE integrator, default 1e-7
eps_abs:Absolute epsilon for ODE integrator, default 1e-10
dt:Timestep, default 0.5 s
tmax: Time when stop simulation, default -1 (never stop)
rcamera: Distance of camera from origin, default 100 m
gxx: Gravity field gx derivative with respect to x
gyy: Gravity field gy derivative with respect to y
gzz: Gravity field gz derivative with respect to z
solarwind_startepoch
planetGM: G*M of planet centred at origin (0,0,0)

obj=vesCreateBody(type,
{prop1=val1,...})

Create new object, supported types are "box", "cylinder"
and "pointmass". Returns a handle that can be passed to
vesDefineInteractionForce. Supported object properties:
mass(scalar): Mass of object (kg)
radius(scalar): Radius of cylinder object (m)
height(scalar): Height of cylinder object (m)
boxsize(3-vector): Depth,width and height of box object (m)
rCM(3-vector): Initial object's geometric centroid position
(m)(equal to centre of mass CM except for prisms, hence
name)
v(3-vector): Initial velocity of object's CM (m/s)
omega(3-vector): Initial angular velocity of object (1/s)
rotateangle(scalar): Object's attitude is initially rotated (rad)
rotateaxis(3-vector): Direction around which rotateangle
rotation is done
rotateangle2(scalar): Possible second rotation parameter
(rad)
rotataeaxis2(3-vector): Possible second rotation axis
colour(3-vector): Object's RGB colour used for visualisation
(0..1)

data=vesGetBodyData(obj) Return table of data of given body (the argument must be
previously returned by vesCreateBody). Currently for point
masses, 'data' contains 7 named fields:
type: "pointmass", "cylinder" or "box"
mass: mass of particle (kg)
x: x-coordinate position of body's centre of mass (m)
y: y-coordinate position of body's centre of mass (m)
z: z-coordinate position of body's centre of mass (m)
vx: velocity x component of body's centre of mass (m/s)
vy: velocity y component of body's centre of mass (m/s)
vz: velocity z component of body's centre of mass (m/s)
In case of a rigid body, in addition seven additional fields
are stored in the table. The quaternion defining the attitude:
qs: s-component of the attitude quaternion (cos(alpha/2))
qx:x-component of the attitude quaternion (sin(alpha/2)*nx)
qy:y-component of the attitude quaternion (sin(alpha/2)*ny)
qz:z-component of the attitude quaternion (sin(alpha/2)*nz)
as well as the angular momentum:
Lx: x-component of angular momentum (Nms)
Ly: y-component of angular momentum (Nms)

10

WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

Lz: z-component of angular momentum (Nms)

vesRedefineBodyData(obj,d
ata)

Set new data values for given object. The table 'data' can
contain named entries x,y,z,vx,vy,vz. For rigid bodies, the
additional entries qs,qx,qy,qz,Lx,Ly,Lz can be given as well.
Missing entries are not set (they retain their old values).
Additional named entries are silently ignored.

f=vesDefineInteractionForce
(objA,objB,rA,rB,
{prop1=val1,...})

Define inter-object force between objects A and B which
must be handles previously returned by vesCreateBody. The
forces affect points rA (given in A's object coordinates) and
rB (given in B's object coordinates). The force is a central
force along the line connecting rA and rB, defined by a
spring constant (F = -k*r) and possible hysteretic and/or
viscous damping coefficient. A force handle is returned that
can be passed to vesRedefineInteractionForce later.
Supported properties:
springconst: Spring constant k, default 1e-3 N/m
r0: Length offset, F = -k*max(r-r0,0), default 0.0 m
r0dot: Time derivative of r0 (true r0(t)=r0+r0dot*t), default
0.0 m/s
rel_lossmodulus: Loss modulus relative to spring constant,
default 0.0
dampconst: Viscous damping constant D, F = -D*v, default
0.0 Ns/m
longest_rateindependent_period: Maximum oscillation
period for which hystereic occurs, default 600 s

vesRedefineInteractionForce
(f,{prop1=val1,...})

Redefine inter-object force, f must be previously returned
by vesDefineInteractionForce. Supported properties are the
same as for vesDefineInteractionForce.

val=vesGetForceValue(f) Get instantaous value of the interaction force f where f is a
handle previously returned by vesDefineInteractionForce.
Attractive force is returned as positive and repulsive as
negative.

vesSetExternalForce(obj,F) Sets external force (3-vector) for the given object

vesAddExternalForce(obj,F) Adds to external force (3-vector) for the given object (i.e.,
same as vesSetExternalForce, but adds to the old value
instead of overwriting it).

dv=vesGetDeltav() Returns accumulated delta-v of the centre of mass (3-vector,
m/s)

vesSetInfoString(s) Sets "info" string written at the middle top of screen

rho,v=vesGetSolarWind(t) Returns solar wind density (scalar, 1/m3) and velocity (3-
vector, m/s) corresponding to given time (seconds from start
of simulation)

vesDumpState(fn) Dump everything to the given restartable CDF state file

vesRestoreState(fn) Restore state from previously dumped CDF file

Table 3: Lua callable functions of VESVISION-v3

11

WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

vesPeriodicTask(t) If this function is defined by the user's Lua script, it is called at dt
intervals before the ODE integrator. The argument t is the global time
in seconds. Typically vesPeriodicTask could for example make calls
to vesRedefineInteractionForce to modify the behaviour of the
simulation.

key_was_pressed=
vesKeypressHandl
er(key,t)

If this function is defined by the user's Lua script, it is called
whenever a key is pressed on the graphics window. The first
argument 'key' is the pressed key as a one-length string and the
second argument t is the global time in seconds. The function must
return a single Boolean value which is true if the routine recognised
the key and false otherwise. The default control keys of vesvision are
checked only if the return value was false, so the
vesKeypressHandler takes precedence over vesvision's default key
bindings.

Table 4: Special optional user-defineable functions in VESVISION-v3

mass1 = vesCreateBody("box",{mass=0.001,boxsize={0.1,0.1,0.1}})
mass2 = vesCreateBody("pointmass",{mass=1e-3,rCM={0.1,0,0}})
vesDefineInteractionForce(mass1,mass2,{0,0,0},{0,0,0},{springconst=1e-
4,dampconst=0.03e-4})

Table 5: A minimal Lua script to implement a two-mass system in VESVISION-v3

12

WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

tether = {}

R_E = 6371.2e3
GM_E = 5.9723e24*6.6742e-11
alt = 700e3
dt = 10.0
m1 = 3.0
m2 = 1.0
spinperiod = 900*8
tether.Young = 0.1 * 70e9
tether.rel_lossmodulus = 0.02
tether.rwbase = 37.5e-6
tether.len = 1e3
diptilt = 11*(math.pi/180)

function CheckNum(x)
 if type(x) ~= "number" then

 print(debug.traceback("*** CheckNum: table value is not numeric",2))
 error("")

 end
 return x
end

vesSetParams({eps_rel=1e-5,eps_abs=1e-
6,dt=dt,rcamera=CheckNum(15*R_E),planetGM=CheckNum(GM_E)})
vorbit = math.sqrt(GM_E/(R_E+alt)) -- initial orbital speed of CM
L1 = tether.len*m2/(m1+m2)
L2 = tether.len*m1/(m1+m2)
omega = 2*math.pi/spinperiod
tension = m1*L1*omega^2
print(string.format("Tether tension = %g cN",100*tension))
v1 = L1*omega
v2 = L2*omega
mass1=vesCreateBody("pointmass",{mass=CheckNum(m1),rCM={0,0,-(R_E+alt)-
L1},v={vorbit-v1,0,0}})
mass2=vesCreateBody("pointmass",{mass=CheckNum(m2),rCM={0,0,-(R_E+alt)
+L2},v={vorbit+v2,0,0}})
tether.springconst = tether.Young*(math.pi*tether.rwbase^2)/tether.len
forceparams =
 {springconst=CheckNum(tether.springconst),

rel_lossmodulus=CheckNum(tether.rel_lossmodulus),
r0=CheckNum(tether.len)}

tether.force = vesDefineInteractionForce(mass1,mass2,{0,0,0},{0,0,0},forceparams)
fp = io.open("leotether.dat","w")
fp:write("# t x y z tension\n")

function Bmodel(r,t)
 local dipmom = -8e22
 local omegaE = 2*math.pi/(24*3600.0)
 local Mz = dipmom*math.cos(diptilt)
 local Mxy = dipmom*math.sin(diptilt)
 local M = Vector.new({Mxy*math.cos(omegaE*t),Mxy*math.sin(omegaE*t),Mz})
 local rmagn2 = r[1]^2 + r[2]^2 + r[3]^2
 local rmagn = math.sqrt(rmagn2)

13

WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

 local ru = Normalise(r)
 return (1e-7/(rmagn2*rmagn))*((3*DotProduct(M,ru))*ru - M)
end

function vesPeriodicTask(t)
 -- m1 is electron emitter
 -- local coordinates, origin is CM of body pair: m1 is at -L1, m2 is at +L2
 -- current is I(x) = I0*(L2-x)/(L1+L2)
 -- force per length is I(x) x B = I(x)*(u x B) where u is unit vector along tether, pointing
from m1 to m2
 -- force on tether is F=integrate(dx*I(x),x=-L1..L2)*(uxB) = I0*(uxB)*(1/2)*(L1+L2)
 -- torque M = integrate(rxdF) = u x integrate(dx*x*(uxB)*I(x)) =
(ux(uxB))*I0*(1/6)*(L2-2*L1)*(L1+L2)
 -- = (1/3)*(L2-2*L1)*(uxF)
 -- = ((u.B)u-B)*I0*(1/6)*(L2-2*L1)*(L1+L2)
 -- F1=(1-s)*F, F2=s*F, 0<=s<=1, find s from correct torque
 -- torque M2 = u*L2 x F2 = L2*s*(uxF)
 -- torque M1 = (-u*L1) x F1 = -L1*(1-s)*(uxF)
 -- demand M1+M2=M: L2*s-L1*(1-s) = (1/3)*(L2-2*L1) ==> s=1/3
 -- ==> F1=(2/3)*F, F2=(1/3)*F
 local I0 = 30e-3
 local data1 = vesGetBodyData(mass1)
 local data2 = vesGetBodyData(mass2)
 local r1 = Vector.new({data1.x,data1.y,data1.z})
 local r2 = Vector.new({data2.x,data2.y,data2.z})
 local v1 = Vector.new({data1.vx,data1.vy,data1.vz})
 local v2 = Vector.new({data2.vx,data2.vy,data2.vz})
 local rmid = (m1*r1+m2*r2)/(m1+m2)
 local vmid = (m1*v1+m2*v2)/(m1+m2)
 local B = Bmodel(rmid,t)
 local u = Normalise(r2-r1)
 local F = (I0*0.5*tether.len)*CrossProduct(u,B)
 if (DotProduct(F,vmid) < 0) then

 local F1 = (2.0/3.0)*F
 local F2 = (1.0/3.0)*F
 vesSetExternalForce(mass1,F1)
 vesSetExternalForce(mass2,F2)

 else
 vesSetExternalForce(mass1,{0,0,0})
 vesSetExternalForce(mass2,{0,0,0})

 end
 fp:write(string.format(
"%g %g %g %g %g\n",t,rmid[1],rmid[2],rmid[3],vesGetForceValue(tether.force)))
end

Table 6: An exemplary VESVISION-v3 Lua script for modelling a satellite in LEO
which has deployed a massless tether with an end mass and which is affected by
Lorentz and gravity gradient forces. Use of customised Lua 3-vector utility class
and simple text file output are also demonstrated. Lines starting by double minus
signs are comments.

14

WP 51 “Dynamic simulator description”, Deliverable D51.1 ESAIL

 5. Conclusions
Two numerical models, VESVISION-v2 and VESVISION-v3 have been created and are in
active everyday use for simulating the dynamical behaviour of E-sails and related systems.
Functionality of the two versions is partly overlapping and partly complementary. Version
v2 is more E-sail specific and (possibly) less accurate in its numerical implementation
while version v3 is more generic (can simulate and arbitrary collection of point masses and
rigid bodies interacting by arbitrary forces) and its integrator is very accurate, but the code
only simulates the mechanical behaviour of the tethers, not their self-consistent
electrodynamics (unless the user writes such routines himself in Lua). Most of our E-sail
models have been run using both tools using a variety of different approximations (for
example, tethers have been modelled as chains of point masses as well as chains of rigid
bars in version 3) and the results have been found similar. Version 2 is usually faster which
has enables longer duration simulations than version 3.
It is a natural question to ask if it would be feasible to have only one tool which combines
the benefits of both versions i.e. provides flexibility, very accurate integration and full E-
sail specific physics models. The main nontrivial challenge in providing such tool would be
to have a modelling framework of the tethers' self-consistent electrodynamics (including
self-consistent computation of the voltage along the tether which takes into account ohmic
potential drop) which is compatible with the high-order ODE solver. This challenge arises
because a natural framework for formulating tether electrodynamics is a partial differential
equation while the high-accuracy mechanical framework of version 3 uses ordinary
differential equation, ODE. Also, there is the tradeoff of speed and accuracy. Version 2 is
sometimes significantly faster than version 3 and as such remains valuable. Our
recommendation for now is to continue using both models. In our opinion, this also
increases reliability of the analysis because the two models have been developed
independently and are using different mathematical modelling approaches.

15

	1. Applicable documents
	2. Introduction
	3. VESVISION-v2
	4. VESVISION-v3
	5. Conclusions

